
SM339 Applied Statistics Spring 2023 Uhan

Lesson 18. New Predictors from Old – Part 1

1 Overview

● Suppose we have three quantitative variables, Y , X1, and X2

● _emodel
Y = β0 + β1X1 + β2X2 + ε

allows us to ût linear relationships between Y , X1, and X2

○ In 3D: a �at surface (plane) through a cloud of observations

● But... what if that’s not the pattern in the data?

● In this lesson, we will learn about new forms of predictors to

○ make the model more �exible, and
○ address non-linear patterns (especially if the linearity conditions are violated)

2 Polynomial terms

● We can include new predictors that take a quantitative predictor variable and raise it to some power

● Model examples:

● Quadratic terms allow us to curve the surface we are ûtting to the data

● For a single quantitative variable X, a polynomial regression model of degree k has the form

3 Interactions

● In some situations, the slope with respect to one predictor might change for diòerent values of the second
predictor

● _is is called an interaction between the two predictors

● In the previous lesson, we saw an interaction between a quantitative variable and an indicator variable

● Now we will consider interactions between two quantitative variables

● _e regression model with interaction for predictors X1 and X2:

● _e interaction term allows us to twist the surface we are ûtting to the data
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4 Complete second-order model

● _e complete second-order model for predictors X1 and X2:

● For two predictors, a complete second-order model includes

○ linear and quadratic terms for both predictors, along with

○ the interaction term

● _is extends to more than two predictor variables by including all linear terms, all quadratic terms, and all
pairwise interactions

5 Notes

● Amajor indication that we should try including some of these new terms:

○ How do we check for this?

● It is important not to overût: make the model too complicated so that it ûts the sampled data well, but doesn’t
translate to the population

○ We want the simplest model that captures the structure in the data

○ We want a parsimonious model

● If a higher-order term (interaction, cubic, etc.) is signiûcant, we will also leave the associated lower-order terms
in the model (even if they aren’t signiûcant)

○ If a higher-order term is not signiûcant, we should consider dropping it

● Two ways to guard against including unnecessary complexity:

○ Examine t-tests for the individual terms

○ Check how much additional variability is explained by these terms

● If linearity is met, we can make good point predictions, and we also have a reasonable summary of the general
relationships among the variables

○ However, unless the other modeling conditions are met as well, we should not do formal inference
(hypothesis testing, intervals)

○ For our purposes, we will only use p-values as a rough guide if we are in this case
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